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An analytical framework is developed to understand and predict the thermoacoustic
instability in solid rocket motors, taking into account the non-orthogonality of the
eigenmodes of the unsteady coupled system. The coupled system comprises the
dynamics of the acoustic field and the propellant burn rate. In general, thermoacoustic
systems are non-normal leading to non-orthogonality of the eigenmodes. For such
systems, the classical linear stability predicted from the eigenvalue analysis is valid in
the asymptotic (large time) limit. However, the short-term dynamics can be completely
different and a generalized stability theory is needed to predict the linear stability
for all times. Non-normal systems show an initial transient growth for suitable initial
perturbations even when the system is stable according to the classical linear stability
theory. The terms contributing to the non-normality in the acoustic field and unsteady
burn rate equations are identified. These terms, which were neglected in the earlier
analyses, are incorporated in this analysis. Furthermore, the short-term dynamics are
analysed using a system of differential equations that couples the acoustic field and
the burn rate, rather than using ad hoc response functions which were used in earlier
analyses. In this paper, a solid rocket motor with homogeneous propellant grain has
been analysed. Modelling the evolution of the unsteady burn rate using a differential
equation increases the degrees of freedom of the thermoacoustic system. Hence, a new
generalized disturbance energy is defined which measures the growth and decay of
the oscillations. This disturbance energy includes both acoustic energy and unsteady
energy in the propellant and is used to quantify the transient growth in the system.
Nonlinearities in the system are incorporated by including second-order acoustics
and a physics-based nonlinear unsteady burn rate model. Nonlinear instabilities are
analysed with special attention given to ‘pulsed instability’. Pulsed instability is shown
to occur with pressure coupling for burn rate response. Transient growth is shown to
play an important role in pulsed instability.

1. Introduction
Solid rocket motors (SRMs) are often prone to combustion instability. The

prediction of combustion instability in the early stage of the design is a formidable
task due to the complex unsteady flow field existing in the combustion chamber.
Combustion instability occurs when the unsteady burn rate from the propellant
(in SRMs) is amplified by the positive feedback of the acoustic oscillations in the
chamber. Combustion instability causes excessive pressure oscillations, which might
resonate with the structural modes of the rocket, leading to excessive vibration
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and damage of the payload. Furthermore, during the occurrence of the combustion
instability, the heat transfer to the combustion chamber walls is increased, eventually
melting them (Sutton 2001). Instabilities in SRMs have been known to exist since
1930 (Culick 2006). Since then, many investigations were conducted to understand
the mechanisms behind them and to arrive at measures to control the same.
Furthermore, combustion instability alone is not the only source of instability in
an SRM. Although other instabilities such as chuffing or L∗ instability (Sutton 2001),
acoustic instability due to vortex shedding in segmented motors (Vuillot 1995; Kourta
1997; Anthoine, Buchlin & Hirschberg 2002) and instability of shear waves at the
propellant surface (Flandro & Majdalani 2003) are important, this paper focuses only
on the thermoacoustic instabilities in the SRM. In the SRM, the driving mechanism
for combustion instability to happen is the response of the unsteady burn rate of
the propellant to chamber acoustics. This leads to unsteady mass addition to the
combustion chamber and ultimately causes an unsteady heat release rate.

Thermoacoustic instabilities in SRMs are attributed to the time lag between the
unsteady burn rate and the chamber acoustics. The phase delay for a particular
frequency can be identified in the time domain as a ‘time lag’. The physical origin
of this time lag can be attributed to various dynamical processes involved in the
burn rate dynamics of the propellant. Instability occurs if the time lag is in some
suitable range such that fluctuating energy is added to the system. The above idea
gave rise to the n−τ model (n is the interaction index that gives the coupling strength
between the acoustic velocity and the unsteady combustion process and τ is the
time lag) developed by Crocco (1956) for liquid rocket engines. The model was very
simple; n and τ vary with frequency in realistic situations. However, it gave a basic
understanding of the physical origin of instability.

Initial attempts to tackle the instabilities theoretically were by Culick (1963) and
Friedly & Peterson (1966), where the linearized equations were studied. They obtained
an explicit expression for the complex frequency of the system. The real part of the
frequency gave the growth or decay of the oscillations. Because the unsteady heat
release rate was the main driving source for the acoustic oscillations, a relation between
the two was developed in order to characterize the system dynamics. This coupling
between the unsteady burn rate in response to acoustic oscillation was captured by the
frequency-dependent admittance function (Y = Mb[(m

′/m̄)/(p′/γ p̄)− (ρ ′/ρ̄)/(p′/γ p̄)])
described by Culick (1968), where Mb denotes the Mach number at the burning
surface, m is the mass addition rate, p is the pressure and ρ is the density. The prime
(′) denotes fluctuating quantities, while the overbar (̄ ) denotes mean quantities. The
admittance function calculated was used to determine the growth of the acoustic
oscillations. Analytical expressions for the admittance function in the linear regime
were derived by Williams (1962) and Deluca, Disilvestro & Cozzi (1995). The
governing equations are nonlinear partial differential equations for the burn rate,
which makes the problem difficult to solve for composite propellants. Some semi-
empirical theories were proposed to handle these difficulties (Brewster & Son 1995).
The form of the admittance function was derived and its exact parameters were found
experimentally (Price 1984). One of the successful experimental techniques used to
calculate the parameter values was the T-burner technique (from the admittance
function), which was demonstrated by Lin & Wang (1995). Experimental and
theoretical analyses were used in tandem to predict instabilities.

A theoretical analysis starts with linearizing the governing equations and analysing
their stability. This leads to finding the eigenvalues (complex frequency) and
eigenmodes of the system. In a classical linear stability analysis, a system is said
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to be linearly stable if the oscillations decay to zero in the asymptotic time limit,
reaching finally the steady state (stable fixed point). The system is linearly unstable
if the oscillations grow exponentially. Both the definitions are for ‘small’ disturbances
with respect to the corresponding mean quantities. The stability of the system is
determined by the real part of the eigenvalues as described earlier. A linearly unstable
system grows exponentially, and after some time the oscillation amplitudes are not
small. The nonlinear effects start playing a major role in the time evolution of
the system, causing the evolution to reach a limit cycle (oscillations with constant
amplitude). This nonlinearity is attributed to the nonlinear chamber acoustics and
nonlinear combustion response of the propellant (Culick 2006).

Culick (1976a) was the first to derive an analytical condition for the existence of
stable and unique limit cycle behaviour using a two-mode Galerkin approximation
with second-order acoustics as the only nonlinear process. Nonlinearity in the
combustion response was also included in the analysis and the dynamical behaviour
was analysed (Levine & Baum 1983; Flandro, Fischbach & Majdalani 2007). Apart
from these, the effect of particulate damping (Culick 1976b), vorticity (Flandro 1995a)
and flow turning (Flandro 1995b) on SRM stability was discussed. Computational
fluid dynamics (CFD) analysis was performed by Schimada et al. (2007) using the
admittance function for burn rate–acoustic coupling and quasi-steady flame model in
the gas phase. Growth rates at low Mach numbers were predicted more accurately
by a second-order finite volume method than the Galerkin technique usually used for
such analysis (Culick 2006).

Another interesting dynamical behaviour observed experimentally was that SRMs
stable for small-amplitude disturbances were seen to become unstable for larger ones
(Culick 2006). This was called ‘pulsed instability’ or ‘triggering’. Many mechanisms
have been proposed for explaining triggering in the past. Second-order gas dynamics
alone were proved to be insufficient to cause triggering because of the absence of ‘self-
coupling’ terms (Culick 1994). Higher-order gas dynamics (third-order acoustics) also
proved the same (Yang, Kim & Culick 1990). Hence, a nonlinear combustion response
was thought of as an alternative candidate for triggering. Culick, Burnley & Swenson
(1995) used an ad hoc nonlinear velocity coupling model for burn rate response to
show triggering numerically. Wicker et al. (1996) analysed various forms of nonlinear
coupling between unsteady burn rate and acoustic variables. By suitably adjusting
the parameters and the form of the coupling terms, triggering was demonstrated.
Anathakrishnan, Deo & Culick (2005) further explained that velocity-coupled models
are the only possible candidates for causing triggering in realistic operating regimes
of SRMs.

In all the above analyses, there are some common assumptions and procedures that
were adopted to solve the thermoacoustic instability problem in the SRM. They are (i)
the orthogonality of the eigenmodes, (ii) the use of admittance (response) functions or
ad hoc models for burn rate–acoustic coupling and (iii) the use of the classical linear
stability theory for all time t. Culick (1997) showed that the frequency shift due to the
non-orthogonality of the eigenmodes is second order in a mean flow Mach number.
However, the system dynamics change dramatically during the initial time because of
the non-orthogonality of the eigenmodes (Kedia, Nagaraja & Sujith 2008). The use
of admittance (response) functions or ad hoc coupling models for burn rate–acoustic
coupling does not account for the initial transients in the burn rate. These can lead
to erroneous prediction of the system dynamics, both qualitatively and quantitatively.
If the evolution of the unsteady propellant burn rate is modelled using a differential
equation in time, then the degrees of freedom for the system are increased. This
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implies that the thermoacoustic system variables include not only acoustic pressure
and velocity but also other variables related to the unsteady burn rate. Therefore,
the initial condition on the problem is restricted not only to acoustic variables but
also to unsteady burn rate, which might show an interesting behaviour. Indeed, it is
found that the effects of non-orthogonality of the eigenmodes play an important role
in the initial conditions related to the unsteady burn rate. The last assumption, i.e.
the validity of the classical linear stability theory, is applicable only in the asymptotic
time limit (Strogatz 2001). This assumption is valid during the initial period, only if
the eigenmodes are orthogonal to each other. Therefore, a new generalized stability
criterion (Farrell & Ioannou 1996) has to be used to account for the short-term
dynamics. This paper relaxes the above three assumptions and offers a more complete
analysis of the thermoacoustic instability in the SRM. A homogeneous propellant is
considered for the present analysis.

2. Non-normality and transient growth
A system is said to be non-normal if the linear operator L governing the

system evolution does not commute with its adjoint L† (LL† �= L†L, † indicates
an adjoint operator) (Golub & Van Loan 1989). For such systems, the eigenmodes
(eigenvectors) are non-orthogonal. Any initial condition for the system can be written
as a linear combination of the eigenmodes. For a linearized system, stable under
the classical linear stability (no nonlinearities included), all eigenmodes are decaying
monotonically in time. However, in the case of the non-normal system, the vectorial
sum of the eigenmodes which gives the state of the system at any time t can
increase (for a suitable initial condition) for a short time and eventually decays
after a long time (Schmid & Henningson 2001). The transient growth occurring
might be of several orders of magnitude and the system might reach a different
dynamical behaviour, e.g. limit cycles, if the nonlinearities become significant as
the amplitude increases during this growth (Balasubramanian & Sujith 2008a). The
qualitative change in the dynamical behaviour due to transient growth cannot
be predicted by the classical linear stability theory, which studies the stability of
individual eigenmodes and analyses the spectrum in the complex plane. However,
the orthogonality of the eigenmodes was explicitly assumed in previous analyses
of thermoacoustic systems (Culick 1997, 2006). It has been shown recently that
thermoacoustic systems are non-normal in general, and the consequences of non-
normality are discussed in the context of ducted diffusion flames (Balasubramanian &
Sujith 2008a) and the Rijke tube (Balasubramanian & Sujith 2008b). In fluid flows,
the interplay between non-normality and nonlinearity is shown to be one of the
routes for the sub-critical transition to turbulence (Gebgart & Grossmann 1994;
Baggett, Driscoll & Trefethen 1995; Barkley & Tuckerman 1999; Criminale & Drazin
2000). An excellent review of non-orthogonality of the eigenmodes and its effects
on transient growth in the context of the stability of laminar shear flows is given
by Schmid (2007). Non-normality and transient growth are observed in many areas
of research including magnetohydrodynamics (Krasnov et al. 2004), astrophysics
(Mukhopadhyay, Afshordi & Narayan 2006) and atmospheric flows (Farrell &
Ioannou, 1996).

In the past, linear stability analyses of SRMs were performed using the classical
linear stability theory (Culick 2006). Energy in the eigenmodes can be transferred
from one eigenmode to another, either due to nonlinear coupling (Culick 1976a) or
due to non-orthogonality of the eigenmodes (Balasubramanian & Sujith 2008b). In
the former case, the coupling comes from the nonlinear time evolution equation for
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the eigenmodes. This is a ‘direct interaction’. This requires some threshold amplitude
(system dependent) to be reached for it to have significant effects in the dynamical
evolution of the system. In the latter case, the energy transfer occurs even with
small disturbances. In this limit, the nonlinearity present in the system (which will
have a mild effect at small amplitudes) transfers a small amount of energy from one
eigenmode to another. If the energy transfer leads to a distribution of energy among
the modes in such a way that transient growth happens, there is a net energy transfer
from the base flow to the eigenmodes. For a linearly stable case, the energy given
in one eigenmode is fed to the base flow and from it the energy is fed back again
to other eigenmodes. Thus, energy transfer happens through the base flow. It is an
‘indirect interaction’.

It is evident that the stability analysis of the SRM has to be modified including
considering the non-orthogonality of eigenmodes. The phenomenon of pulsed
instability observed in SRMs has been demonstrated theoretically only with ad hoc
burn rate–acoustic coupling models. This paper concentrates on the four main issues.
The first issue is the inclusion of the non-orthogonality of eigenmodes, which plays
an important role in the short-term dynamics of the system. The second is to use
a physics-based model for the burn rate response of a homogeneous propellant to
demonstrate the various observed phenomena, especially pulsed instability. The model
also captures the transients (important for non-normal systems), which facilitates
the prediction of system dynamics during the initial time. Therefore, a differential
equation for the time evolution of the state vector is derived for the unsteady burn
rate–acoustic coupling and is solved simultaneously along with the equations for
the acoustic field. The dynamical system now considered comprises not only acoustic
variables (with a source from the unsteady propellant burn rate) but also the variables
associated with the unsteady burn rate. The third issue is to include all the nonlinear
processes involved, so that the energy transfer and large amplitude oscillations (limit
cycles) are accurately predicted. The fourth issue is that experiments performed by
Blomshield et al. (1997b) indicate that the triggering pressure amplitude required for
pulsed instability is very small (see figure 13 and table 5 of Blomshield et al. 1997b)
compared to the steady state and mean pressure during the limit cycle (triggering
pressure amplitude is ∼4 % of the steady state pressure). Furthermore, the triggering
pressure amplitude in their study is much smaller than the limit cycle amplitude.
This paper investigates if pulsed instability can be obtained from a small-amplitude
initial pulse (compared with the limit cycle amplitude) as observed by Blomshield
et al. (1997b).

3. Formulation
The SRM considered here has a prismatic cylindrical propellant grain of length l,

port circumference Sl and a constant port area Sc. A schematic of the geometry
considered with the coordinate system used is shown in figure 1. A cylindrical
geometry is studied so as to make the analysis simple.

3.1. Chamber acoustics

In the SRM, the amplitude of the limit cycle pressure oscillations is often about
20 % of the mean chamber pressure (Culick 1976a; Flandro 1996). In this range of
pressure oscillations, nonlinear acoustics plays an important role in the nonlinear
dynamical evolution of the system. This is in contrast to gas turbines, where
the limit cycle pressure oscillations are 3 %–4 % of the mean chamber pressure
(Lee & Santavicca 2005) and the nonlinearity in combustion response alone can
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Figure 1. Schematic diagram of the combustion chamber geometry of the SRM considered.

be assumed to play an important role. Hence the present analysis includes a
second-order nonlinearity in acoustics (Culick 1976a, 1976b, 1994; Yang et al. 1990)
and a physics-based nonlinear model for combustion response (Krier et al. 1968).
The acoustic oscillations are assumed to be isentropic, which is valid up to the
inclusion of second-order nonlinearities (Culick 1997). Reddy & Trefethen (1994) have
shown that the convection differential operator causes non-normality in the system
((d/dx)† = −d/dx, † indicates adjoint operator). Therefore, the stronger the convec-
tion, the higher is the level of non-normality. In SRM combustion chambers, the mean
flow Mach number is around 0.1, which creates strong convective effects. Hence, the
distribution of mean axial velocity plays a key role in characterizing the non-normality
of the system. The above picture can be looked as an asymmetry in the flow field, which
eventually leads to non-normality. A similar kind of asymmetry is present in the earlier
analysis with a diffusion flame (Balasubramanian & Sujith 2008a) and Rijke tube
(Balasubramanian & Sujith 2008b) due to the presence of a localized heat source.
In contrast to these, an SRM has distributed heat sources; however, the strong
convection leaves the system non-normal. In general, non-normality in a convection–
diffusion problem occurs from the convection term that creates asymmetry in the
distribution of any flow variable because of the directionality of the base flow,
whereas diffusion is a gradual process which does not create any asymmetry
(Balasubramanian & Sujith 2008a). In order to keep the analysis tractable, we assume
a constant mean chamber pressure p̄, density ρ̄ and temperature T̄ , which are valid
assumptions for an SRM (Culick 1997). The effects of ‘flow turning’ (stabilizing) and
‘pumping’ (destabilizing) cancel each other exactly for cylindrical propellant geometry
(Flandro 1995b); hence, they do not appear in this analysis. The one-dimensional
steady continuity equation is

∂(ρ̄ū)

∂x̃
= m̄ and m̄ = R̄ρp

Sl

Sc

, (1)

where, m̄ is the mean mass influx rate from the propellant per unit volume at any axial
location, ū is the base flow velocity, R̄ is the mean propellant regression rate and ρp is
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the propellant density. Integrating the equation with head end velocity as zero gives

ū =
m̄

ρ̄
x̃. (2)

The above equation gives the axial variation of mean velocity, which is used for
further calculations. At low Mach numbers M, the isentropic relation for fluctuations
in density can be used up to second-order acoustics (Culick 1976a). Hence, the
continuity equation is decoupled from momentum and energy equations. The
unsteady momentum and energy equations are given by

�
ρ

(
∂

�

u

∂t̃
+

�

u
∂

�

u

∂x̃

)
= −∂

�

p

∂t̃
− �

m
�

u, (3)(
∂

�

p

∂t̃
+

�

u
∂

�

p

∂x̃
+ γ

�

p
∂

�

u

∂x̃

)
= (γ − 1)

�

Q, (4)

where
�

m=
�

RρpSl/Sc,
�

Q=
�

m�h, �h is the heat of reaction of the propellant at a
constant pressure per unit mass and γ is the ratio of specific heat capacities at

constant pressure and volume. The source term
�

m
�

u in (3) is due to the reduction
of the momentum of the fluid in the chamber due to the low-velocity inflow of

the burning propellant. The source term
�

Q in (4) is due to the energy released
by the propellant to the fluid in the chamber. Decomposing the flow variables

as
�

u= ū + ũ′,
�

p = p̄ + p̃′,
�

m= m̄ + m̃′,
�

Q= Q̄ + Q̃′ and
�

R = R̄ + R̃′, followed by
substituting the above in (3) and (4), one obtains the governing equations for the
perturbations. The acoustic momentum and energy equations thus obtained are (with
nonlinear terms given within curly brackets { }):

ρ̄

[
∂ũ′

∂t̃
+ ū

∂ũ′

∂x̃
+ ũ′ dū

dx̃

]
+

{
ρ̄ũ′ ∂ũ′

∂x̃
− ρ̃ ′ ∂p̃′

∂x̃

}
= −∂p̃′

∂x̃
− [m̃′ū + m̄ũ′ + {m̃′ũ′}], (5)

∂p̃′

∂t̃
+ ū

∂p̃′

∂x̃
+ γ

[
p̄

∂ũ′

∂x̃
+ p̃′ dū

dx̃

]
+

{
ũ′ ∂p̃′

∂x̃
+ γ p̃′ ∂ũ′

∂x̃

}
= (γ − 1)Q̃′, (6)

where Q̃′ = m̃′�h= R̃′ρp�h(Sl/Sc), the tilde (∼) denotes dimensional quantities, ũ′ is
the acoustic velocity, p̃′ is the acoustic pressure, m̃′ is the fluctuation in mass influx
rate per unit volume, Q̃′ is the fluctuating heat release rate per unit volume by the
propellant combustion and R̃′ is the fluctuating burn rate.

We non-dimensionalize the above equations as follows: p = p̃′/p̄, u = ũ′/um,

Ū = ū/um, R = R̃′/R̄, x = x̃/ l, M = um/a, where um = (m̄l)/(2ρ̄) is the average base
flow velocity, Ū = 2x is the non-dimensional base flow velocity, a is the sonic speed
and M is the average base flow Mach number. The non-dimensionalized acoustic
momentum and energy equations are

∂u

∂t
+ M

[
Ū

∂u

∂x
+

dU

dx
u

]
+

1

γM

∂p

∂x
= km[RŪ + u] +

{
kmRu − Mu

∂u

∂x
+

p

γM

∂p

∂x

}
, (7)

∂p

∂t
+ γM

[
∂u

∂x
+

dŪ

dx
p

]
+ MŪ

∂p

∂x
= keR −

{
Mu

∂p

∂x
+ γMp

∂u

∂x

}
, (8)

where km = −(m̄uml)/(p̄γM), ke = ((γ − 1)lm̄�h)/(p̄a).



8 S. Mariappan and R. I. Sujith

3.2. Solution procedure

The Galerkin technique (Zinn & Lores 1971; Padmanabhan 1975) is used to solve
(7) and (8). The dependent variable is expanded as a linear combination of basis
functions, which are chosen to satisfy the boundary conditions. The basis functions
are chosen for a duct, which is acoustically closed at both ends, in spite of the
non-zero admittance at the nozzle entry. The actual eigenmode shape is shown to
deviate from the above, which is of the order of average mean flow Mach number
(M ∼ 0.1) (Culick 1976a). Although non-trivial boundary conditions lead to the non-
normality of the system (Nicoud et al. 2007), our investigation mainly focuses on
the non-normal nature of the system, arising purely from the interaction of chamber
acoustics and unsteady burn rate. This can be regarded as the first step in analysing
the non-normal nature of the thermoacoustic interaction in the SRM. Hereafter, the
term ‘mode’ specifies only the Galerkin mode unless specified. The spatial distribution
of the unsteady burn rate is expanded on the above basis. The coefficients Rc

m and Rs
m

are obtained from the unsteady burn rate equation discussed in § 3.4. The variables
are expanded as follows:

u(x, t) =

N∑
m=1

Um(t) sin(ωmx), p(x, t) = γM

N∑
m=1

Pm(t) cos(ωmx),

R(x, t) =

N∑
m=1

[
Rc

m(t) cos(ωmx) + Rs
m(t) sin(ωmx)

]
, ωm = mπ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(9)

where N is the number of Galerkin modes used in the above expansion. The above
expressions are substituted in (7) and (8). Then the evolution of the coefficients
(Um, Pm, Rc

m and Rs
m) is obtained by projecting the obtained equation onto the basis

function (Galerkin mode) used for expansion, utilizing the orthogonality of the basis
function. The following evolution equations are finally obtained:

•
Un + 2

N∑
m=1

(
UmI 1

n,m + PmI 2
n,m + Rc

mI 3
n,m + Rs

mI 4
n,m

)
= 2

{
kmN1

n − MN2
n − γN3

n

}
, (10)

•
P n +

2

γM

(
N∑

m=1

[
UmI 5

n,m + PmI 6
n,m + Rc

mI 7
n,m

])
=

2

γM

{
γM2N4

n − (γM)2N5
n

}
. (11)

The coupling terms are given in Appendix A.
The set of 2N coupled first-order ordinary differential equations is solved by using

the fourth-order Runge–Kutta scheme (Riley, Hobson & Bence 2006). The integrals
I 1
n,m, I 3

n,m and I 4
n,m are the major contributors for the non-normality of the system.

The terms contain the convective term Ū = 2x, which is a linear function of x giving
a non-vanishing coupling integral. Thus, the coupling among the Galerkin modes
is formed and termed as ‘apparent linear coupling’. These terms lead to the initial
transient growth and its relation to eigenmodes is discussed by Kedia et al. (2008).
Note that the mean flow velocity Ū = 2x creates asymmetry in the flow field as
discussed in § 3.1.

3.3. Damping

Nozzle damping and viscous dissipation are the sources of damping of acoustic
oscillations in SRMs. The former contributes much to the damping of acoustic waves.
A part of the incident wave at the choked nozzle is carried away by the mean flow (the
remaining is reflected at the choked throat). Thus, some part of the acoustic energy
is carried away from the system and hence leads to loss. The loss coefficient αNO
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evaluated for short nozzles (nozzle length is small compared to acoustic wavelength)
is given by (Zinn 1972)

αNO = −
[
MN

(
γ + 1

2

)(
1 +

γ + 1

2
M2

N

)]
, MN =

m̄l

ρ̄a
, (12)

where MN is the Mach number at the nozzle entrance plane. Even though a closed–
closed boundary condition is assumed for the rocket combustion chamber, some part
of the acoustic energy is carried away by the mean flow, the effect of which has to be
accounted for in the governing equations. It is a standard practice (Culick 2006) to
use the natural duct modes as the basis for projecting the equations and at the same
time include the effect of the nozzle as a damping term in the governing equation. An
acoustic boundary layer develops because of the viscous effect and no-slip boundary
condition at the propellant surface. The effect is modelled as a volumetric sink term
with the damping coefficient ξm given by (Matveev 2003):

ξm = −
(

C1

ωm

ω1

+ C2

√
ω1

ωm

)
, (13)

where ωm is the frequency of the mth Galerkin mode, C1 and C2 are constants
that determine ξm. For the rocket motor considered in table 1, l = 8 m (a medium-
sized motor) and the frequency of oscillations encountered during the limit cycle
oscillation is 66.25 Hz (see § 7.3), which is close to the fundamental mode of the
rocket configuration. Hence, the frequency of oscillation is not very small and
viscous damping is expected to play a role. The higher acoustic modes will have
higher frequencies and are affected by viscous damping and hence viscous damping
has to be included. Moreover, the viscous damping coefficients chosen for the
present simulations are small (C1, C2 ∼ O(10−2)) compared with the nozzle damping
(αNO ∼ O(10−1)). The decay of the mth Galerkin pressure mode due to damping is
given by

∂Pm

∂t
= (ξm + αNO )Pm. (14)

The right-hand side of (14) is added to the right-hand side of (11) to account for
the losses. A similar analysis is performed by Matveev (2003). The final acoustic
momentum and energy equations are as follows:

•
Un + 2

N∑
m=1

(
UmI 1

n,m + PmI 2
n,m + Rc

mI 3
n,m + Rs

mI 4
n,m

)
= 2

{
kmN1

n − MN2
n − γN3

n

}
, (15)

•
P n − (ξn + αNO )Pn +

2

γM

(
N∑

m=1

[
UmI 5

n,m + PmI 6
n,m + Rc

mI 7
n,m

])

=
2

γM

{
γM2N4

n − (γM)2N5
n

}
. (16)

3.4. Unsteady burn rate

The unsteady burning of the propellant in response to the acoustic oscillations is
shown to be the main driving source of acoustic instabilities in SRMs (Williams
1962; Kuo & Summerfield 1984). Gusachenko & Zarko (2008) give an excellent
review of the unsteady solid propellant burn rate models. The burn rate fluctuates
in response to acoustic pressure and velocity (parallel to the propellant surface)
oscillations in the chamber (Culick 1968). Much less is known about the velocity
coupling models and only ad hoc response functions are used for the SRM stability
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analysis (Levine & Baum 1983; Baum & Levine 1986). The acoustic velocity leads to
the convective heat transfer at the propellant surface leading to unsteady burn rates.
Sometimes flow reversal takes place which further increases the nonlinearity of the
response. In this paper, acoustic pressure–burn rate coupling alone is investigated,
as the acoustic velocity–burn rate coupling needs a more involved treatment. The
models available to study acoustic velocity–burn rate coupling are very few and are
insufficient to represent the dynamics involved in sufficient detail.

On the other hand, a number of models exist for unsteady burn rate–acoustic
pressure coupling. When a propellant burns, there exist a condensed phase and a gas
phase above the propellant surface. The flame is present in the gas phase and most of
the heat release is from that phase. There are three basic time scales involved in the
problem: (i) the reaction time scale of the flame, (ii) the flow time scale in the gas and
condensed phases, (iii) the conduction time scale in the solid phase. A homogeneous
propellant is analysed in the present case, which results in a premixed flame in the gas
phase (Williams 1985). Premixed flame reaction time scales are very small compared
with the acoustic time scales of the chamber. Furthermore, assuming a quasi-steady
gas phase and a small condensed phase (solid and pyrolysed gaseous propellant) leads
to analysing the dynamic response only in the solid phase (Williams 1962; Krier et al.
1968). Later, the restriction of small condensed phase was relaxed (Romanov 1999).
Thermal inertia in the gas phase has been studied by Kumar & Lakshmisha (2000).
Culick & Isella (2000) incorporated the dynamics in the condensed and gas phases.
Apart from these, the burn rate response with phase transitions in the condensed
phase (Cozzi, Deluca & Novozhilov 1999), propellant heterogeneity (Cohen & Strand
1985) and some specific class of propellants (Ward, Son & Brewster 1998) have
been investigated. An asymptotic analysis has also been used to obtain the burn rate
response of the propellant (Margolis & Armstrong 1986, 1988). However, the above
analysis is mathematically complex and analytical solutions are very much limited.

The unsteady burn rate model used in this paper is from Krier et al. (1968). The
model used here is simple but it captures the essential physics of the problem. The
time lag between the acoustic pressure and burn rate is due to the finite speed of
thermal wave propagation in the solid phase and the time scale (τth = α/R̄2) associated
is comparable with the chamber acoustic time scale (τa = l/a). The ratio F = τa/τth

for the SRM parameters shown in table 1 equals 1.37. A differential equation in time
for non-dimensional temperature (T) inside the propellant grain is derived from the
energy equation. The propellant burn rate is then related to the surface temperature by
a power law (Krier et al. 1968). The dynamical boundary condition is written, relating
the acoustic pressure and heat transfer at the propellant surface. The derivation of
the equation is given in Krier et al. (1968) and the final nonlinear equation is as
follows.

At each x location,

∂T

∂τ
− (1 + R)

∂T

∂y
− ∂2T

∂y2
= 0, 0 � y < ∞, 0 � τ < ∞,

R = T
mp

S − 1, TS(τ ) = T (y = 0, τ ), τ/t = (lR̄2)/(aα) = F,

⎫⎬⎭ (17)

boundary condition (BC) :
∂T

∂y

∣∣∣∣
y =0

= − (1 + p)2n((1 + p)n/mp − H )

1 +R
− H (1 + R), (18)

T (y → ∞, τ ) = 0,

initial condition (IC) : T (y, 0) = Tst (y) + T 0
p (y), (19)
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x direction Propellant
surface

1 + R(x)

y

Figure 2. Geometry of the pressure-coupled propellant response model.

where y = ỹ/(α/R̄), τ = t(l/a)/(α
/
R̄2), H = QS/(Sp(T̃S,0 − T̃∞)), T = (T̃ − T̃∞)/(T̃S,0 −

T̃∞),Tst = e−y, T̃∞ is the temperature of the propellant at y → ∞, T̃S,0 is the surface
temperature of the propellant, Tst is the non-dimensional steady state temperature, T 0

p

is the non-dimensional temperature fluctuation at t = 0, n is the burn rate index, mp is
the pyrolysis coefficient, α is the thermal diffusivity of the propellant, QS is the overall
heat release per unit mass at the propellant surface, Sp is the specific heat capacity
of the propellant, y is the non-dimensional distance from the propellant surface, H is
the ratio of the heat release at the propellant surface to its thermal capacity and F is
the ratio of time scales of the chamber acoustics (τa) and transient heat conduction
in the propellant (τth).

The coordinate system is fixed to the propellant surface which regresses according
to the burn rate. The geometry is shown in figure 2. A Dirichlet-type boundary
condition far from the propellant surface and a Neumann type at the surface (18),
which comes from the balance between the amount of heat transfer from the flame
in the gas phase to the propellant surface, are applied. The steady state temperature
profile (Tst = e−y) obtained as the solution of the corresponding steady state problem
∂T /∂y + ∂2T/∂y2 = 0, is exponentially decaying in y. The problem is formulated in
one dimension as the response function predicted is shown to be accurate by Baum &
Levine (1986) and Culick & Isella (2000). Note that (1 + R) in (17) appears as a
convection term, as the coordinate system is fixed to the propellant surface, which is
regressing with the burn rate at that time (see figure 2). As described in § 3.1, this term
contributes to the non-normality in the burn rate response. The other term in (17), i.e.
the diffusion term, has no preferred direction associated with it ((d2/dx2)† = d2/dx2)
and hence does not contribute to the non-normality of the burn rate response.
The above advection–diffusion equation is shown to produce high transient growth
by Reddy & Trefethen (1994). The presence of a non-normal behaviour in both
combustion and acoustics leads to high transient growth when coupled together.
Hence, the short-term dynamics obtained from both the unsteady burn rate and
acoustic equations will be very different from those predicted by the classical linear
stability theory for asymptotic time. It is now important to understand the various
physical processes that contribute to the dynamics of the unsteady burn rate.

The mechanism of the burn rate–acoustic pressure coupling is as follows. The
reaction rate of a premixed flame is dependent on the pressure and, to a weaker
extent, on the temperature. During the compression part of the acoustic cycle, the
flame speed increases, and the flame comes closer to the solid thereby causing more
heat transfer to the solid. The pyrolysis of the propellant is assumed to obey the
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Arrhenius law, which under practical values of activation energy leads to a power-law
dependence on surface temperature (Krier et al. 1968). Higher heat transfer to the
solid phase increases the solid phase surface temperature and hence the burn rate.
Thus, the acoustic forcing comes through the boundary condition stated in (18), which
is a crucial difference from the earlier analysis of Balasubramanian & Sujith (2008a),
where the forcing explicitly appears through the convective term in the equation.

From the physics of the problem, the temperature fluctuations are expected to be
high near the propellant surface and decrease towards the chamber casing (Dirichlet
boundary condition). Thus, it is necessary to cluster more grid points near the surface,
which will yield accurate results with fewer grid points and hence less computational
time (Anderson 1996). The transformation η = e−ky is used; k controls the amount of
grid clustered near the propellant surface.

Equation (17) with boundary (18) and initial (19) conditions is transformed into

∂T

∂τ
+ ((1 + R)kη − k2η)

∂T

∂η
− (kη)2

∂2T

∂η2
= 0, 0 � η � 1, 0 � τ � ∞,

R = T
mp

S − 1, TS(τ ) = T (η = 1, τ ),

BC :
∂T

∂η

∣∣∣∣
η =1

=
1

k

(
(1 + p)2n((1 + p)n/mp − H )

(1 + R)
− H (1 + R)

)
, T (η → 0, τ ) = 0,

IC : T (η, 0) = η1/k + Tp(η).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(20)

Equation (20) is solved by a semi-implicit backward time central space (BTCS) scheme
similar to that used by Junye (2000). The burn rate R(x) at each axial location is
obtained for the corresponding pressure at that location. Now, in order to use the
source terms R(x) in (15) and (16), R(x) is projected onto the Galerkin modes and
Rc

m, Rs
m are obtained as

Rc
m(t) = 2

∫ 1

0

R(x, t) cos(ωmx) dx,

Rs
m(t) = 2

∫ 1

0

R(x, t) sin(ωmx) dx.

⎫⎪⎪⎬⎪⎪⎭ (21)

To track the evolution of the system, the nonlinear equations (15) and (16) are integ-
rated using the fourth-order Runge–Kutta (RK4) method with (20) updated at each
sub-step of RK4 using the semi-implicit BTCS scheme. General conclusions about
non-normality of the system can be made with the linearized equations. To quantify
the effect of non-normality, the equations are cast in a standard linearized form,
which can be analysed using an existing framework (Schmid & Henningson 2001).

4. Short-term dynamics and transient growth
To analyse the non-normal system, a state space vector formulation is used.

Farrell & Ioannou (1996) developed a generalized stability theory for non-normal
linear operators, in the context of atmospheric sciences. In the state space vector
representations, a general N dimensional linear dynamical system is given by

dχ(t)

dt
= Lχ(t), (22)

where L is an N dimensional square matrix. Balasubramanian & Sujith (2008a,
2008b) have shown that L is non-normal (LL† �=L†L) for a thermoacoustic
system. The general solution is given by χ(t) = eLtχ(0), where χ(0) is the initial
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condition. An amplification factor is defined as σ 2 = 〈χ(t)|χ(t)〉 / 〈χ(0)|χ(0)〉 (〈•|•〉
denotes inner product in the linear vector space, |χ(t)〉 = χ(t), 〈χ(t)| = χ†(t))
as a measure of growth or decay of fluctuations in the system during its
time evolution. Note that σ 2 can be related to some physical quantity such as
the disturbance energy of the system (Schmid & Henningson 2001; Nagaraja,
Kedia & Sujith 2009). Moreover, σ 2 will depend on the choice of the initial
condition. The maximum value of σ 2 for all possible initial conditions is given by
G(t) = Maxχ (0)

(
〈χ(t)|χ(t)〉 / 〈χ(0)|χ(0)〉

)
= ‖eLt‖2 (Golub & Van Loan 1989). Here,

‖A‖ denotes the 2-norm of the matrix A. The optimum initial condition (Vopt ) to
attain the maximum transient growth is the first column of the matrix V, given by
the singular value decomposition of eLt = UDV † (Golub & Van Loan 1989; Nagaraja
et al. 2009), where D is a diagonal matrix with entries as singular values arranged in
descending order. Now, from the evolution of G(t), maximum amplification over all
possible initial conditions and time can be obtained. For a system that is unstable
according to the classical linear stability theory, Gmax = max(G(t)) → ∞. For a
system that is stable according to the classical linear stability and is highly non-
normal, Gmax � 1. This shows high initial transient growth. For a linearly stable
normal system, Gmax = 1.

5. Linear analysis
To analyse the generalized stability of the system as discussed in the previous

section, (15), (16) and (20) are linearized to give the following:

•
Un + 2

N∑
m=1

(
UmI 1

n,m + PmI 2
n,m + Rc

mI 3
n,m + Rs

mI 4
n,m

)
= 0, (23)

•
P n − (ξn + αNO )Pn +

2

γM

(
N∑

m=1

[
UmI 5

n,m + PmI 6
n,m + Rc

mI 7
n,m

])
= 0, (24)

∂Tp

∂τ
+ (k − k2η)

∂Tp

∂η
− (kη)2

∂2Tp

∂η2
+ mpη1/kTps = 0,

R = mpTps, Tps(t) = Tp(η = 1, t), τ/t = lR̄2/aα = F,

BC :
∂Tp

∂η

∣∣∣∣
η=1

=

(
ATps − Bp

k

)
, Tp(η → 0, τ ) = 0,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(25)

where A= (2H −1)/mp, B = (2H −1/mp−2)/n, Tp is the fluctuating temperature in the
propellant given by Tp = T −Tst = T −η1/k. Equation (25) has to be applied at all axial
locations. Because R is a linear function of Tps , Tp can be decomposed as follows:

Tp(x, t) =

N∑
k=1

[
T c

k (t) cos(ωkx) + T s
k (t) sin(ωkx)

]
, Rc

k = T c
k /mp, Rs

k = T s
k /mp. (26)

The above expression, when substituted in (25) and then projected onto the Galerkin
basis as described earlier, leads to the following equations:

∂T c
n

∂τ
+ (k − k2η)

∂T c
n

∂η
− (kη)2

∂2T c
n

∂η2
+ mpη1/kT c

sn = 0

T c
sn(t) = T c

n (η = 1, t),

BC :
∂T c

n

∂η

∣∣∣∣
η=1

=

(
AT c

sn − BγMPn

k

)
, T c

n (η → 0, τ ) = 0,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(27)
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∂T s
n

∂τ
+ (k − k2η)

∂T s
n

∂η
− (kη)2

∂2T s
n

∂η2
+ mpη1/kT s

sn = 0,

T s
sn(t) = T s

n (η = 1, t),

BC :
∂T s

n

∂η

∣∣∣∣
η=1

=

(
AT s

sn

k

)
, T s

n (η → 0, τ ) = 0.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(28)

An important observation in the linear regime is that the Galerkin pressure mode is
absent in the boundary condition for (28). Hence, Rs

n is not affected (in the linearized
equations) by the acoustic fluctuations, and it evolves depending only on its initial
condition. However, it affects the acoustic momentum equation (23) through the
Rs

mI 4
n,m term. Equations (23), (24), (27) and (28) can be cast in the form of (22).

Equations (27) and (28) are discretized using a second-order central difference at Mg

equally spaced points in ‘η’. The linearized equations are

dχ

dt
= Lχ,

χ =
(
Ω Ψ c

1 Ψ c
2 . . Ψ c

N Ψ s
1 Ψ s

2 . . . Ψ s
N

)
1×2NMg

,

Ω = (U1P1 . . . UNPN )T1×2N, T representsmatrix transpose,

Ψ c
n =

(
β1T

c
n(1)β2T

c
n(2) . . . . βMg−1T

c
n(Mg−1)

)T

1×(Mg−1)
,

Ψ s
n =

(
β1T

s
n(1)β2T

s
n(2) . . . . βMg−1T

s
n(Mg−1)

)T

1×(Mg−1)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(29)

where the subscripts n(1), n(2), n(3), . . . , n(Mg − 1) represent the fluctuating
temperature at 1st, 2nd, 3rd, . . . , (Mg −1)th points from the propellant surface for the
nth mode. The homogeneous boundary condition (T c

n (η → 0, τ ) = T s
n (η → 0, τ ) = 0)

at the last point leaves Ψ c
n and Ψ s

n with (Mg − 1) discrete points. The linear operator
matrix is expanded in Appendix B. Now, as mentioned in § 2, (25) indicates the
extra degree of freedom for the system apart from acoustics and it appears as
extra variables Ψ c

n , Ψ s
n in (29). This implies that not only does the system comprises

acoustic variables but it is also an extended one with variables from the burn rate
response. Hence, acoustic energy (Rienstra & Hirschberg 2008), which defines the
growth or decay of acoustic oscillations, is inadequate. A new generalized disturbance
energy is defined which accounts for the perturbations in burn rate variables (Ψ c

n ,Ψ s
n ).

A formal derivation of fluctuating thermal energy in the propellant is performed. The
thermal energy obtained is then added to the acoustic energy with appropriate weight
factors (arrived at from the consideration of entropy generation at the propellant
surface) to get the ‘generalized disturbance energy’. The factor βi in (29) is present
for the reason, that the 2-norm or L2 norm of χ(t) represents the disturbance
energy. The following section deals with the disturbance energy and its relation to
〈χ(t)|χ(t)〉.

6. Generalized disturbance energy
As mentioned in § 4, σ 2, which is a relative measure of the 2-norm of χ(t)

(‖χ(t)‖ = (〈χ(t)|χ(t)〉)1/2), can be related to the energy in the disturbance calculated
from the state space variables in (29). From our analysis, this energy has
two components. The first component is from the chamber acoustic field and
the second is from the unsteady thermal energy of the propellant. Energy in
the acoustic field can be characterized by the familiar acoustic energy Ẽac(t) =
1
2

∫∫∫
chamber volume

[(ρ̄ũ′(x, t))2 + (p̃′(x, t)/ρ̄a2)2] dV (Rienstra & Hirschberg 2008).
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Non-dimensionalizing the above by ρ̄u2
mScl/2 leads to the following:

Eac(t) =
Ẽac(t)

1
2
ρ̄u2

mScl
=

∫ 1

0

[
(u(x, t))2 +

(
p(x, t)

γM

)2
]

=
1

2

N∑
n=1

(
U 2

n + P 2
n

)
. (30)

Now a similar expression for the fluctuating energy stored in the solid phase of the
propellant has to be calculated to get the total disturbance energy. Equation (17) is
written in its linearized and dimensional form for the fluctuating temperature T̃ ′ as

ρpSp

(
∂T̃ ′

∂t̃
− R̄

∂T̃ ′

∂ỹ
− R̃′ ∂T̃st

∂ỹ

)
= λp

∂2T̃ ′

∂ỹ2
, (31)

where λp is the thermal conductivity of the solid phase of the propellant. Multiplying

the above equation by T̃ ′/T̄ and rearranging, we obtain

ρpSp

2T̄

∂T̃ ′2

∂t̃
=

λp

T̄

(
∂

∂ỹ

(
T̃ ′ ∂T̃ ′

∂ỹ

)
−
(

∂T̃ ′

∂ỹ

)2
)

+
ρpSpR̄

2T̄

∂T̃ ′2

∂ỹ
+

ρpSp

2T̄

∂T̃st

∂ỹ
R̃′T̃ ′. (32)

Integrating (32) over the entire solid phase propellant volume and applying Gauss
divergence theorem, we get

ρpSp

2T̄

∂

∫ ∫ ∫
V1

T̃ ′2 dV

∂t̃
=

1

T̄

(∫ ∫
Sl

λpT̃ ′ ∂T̃ ′

∂ỹ
dS +

ρpSpR̄

2

(
T̃ ′2|Su

− T̃ ′2|Sl

))
+

ρpSp

2T̄

∫ ∫ ∫
V1

∂T̃st

∂ỹ
R̃′T̃ ′ dV − λp

T̄

∫ ∫ ∫
V1

(
∂T̃ ′

∂ỹ

)2

dV, (33)

where V1 is the entire propellant volume, Sl is the entire propellant surface, Su is
propellant upper surface and Sl is the propellant lower surface (casing). The left-hand
side of (33) is a positive definite quantity, which is the fluctuating energy due to
temperature fluctuations in the propellant. The first term in the right-hand side is the
corresponding energy flux term. The second term is due to the contributions from
the unsteady burn rate and the last term is from the loss due to thermal conduction
(the term is always negative). Now the equation is the conservation equation for the
fluctuating energy Ẽp present in the solid propellant. The fluctuating energy Ẽp is

Ẽp =
ρpSp

2T̄

∫ ∫ ∫
V1

T̃ ′2 dV =
ρpSp

2T̄
(T̃S,0 − T̃∞)2lSl

α

R̄

∫ ∞

y=0

∫ 1

x=0

T 2
p dx dy. (34)

Non-dimensionalizing the above by ρ̄u2
mScl/2, substituting for Tp from (26) and

substituting η = e−ky , we obtain

Ep =
Ẽp

1
2
ρ̄u2

mScl
=

δ

2

∫ 1

η=0

N∑
n=1

((
T c

n√
η

)2

+

(
T s

n√
η

)2
)

dη, (35)

where δ = (ρpSpαSl(T̃S,0 − T̃∞)2)/(R̄ρ̄T̄ u2
mSck). Discretizing in the η domain leaves (35)

as

Ep =
Ẽp

1
2
ρ̄u2

mScl
=

δ

2

N∑
n=1

Mg−1∑
i=1

((
T c

n√
ηi

)2

+

(
T s

n√
η

i

)2
)

�η. (36)

Now, the weightage to energies Ẽac and Ẽp in forming the total disturbance energy

ẼT is fixed by considering the energy from entropy fluctuations. Chu (1965) has
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derived an expression for the disturbance energy (Ẽchu) and is given by Ẽchu(t) =
(1/2)

∫∫∫
chamber volume

[(ρ̄ũ′(x, t))2 + (p̃′(x, t)/(ρ̄a2))2 + ((γ − 1)P̄ )/γ (s̃ ′/)2] dV , where
s̃ ′ is the entropy fluctuation and  is the characteristic gas constant of the gas
in the combustion chamber. Flame is the source of entropy fluctuations in the motor.
The entropy fluctuations are computed from propellant surface temperature and
acoustic fluctuations, as derived by Krier et al. (1968), as

s̃ ′

 =
γ

γ − 1
Θ

[(
2nH − 2n − n

mp

− 1

)
p + (2mp + 1 − 2mpH )Tps

]
, (37)

where Θ =(T̃S,0 − T̃∞)/(T̃f ). Note that T̃f is the steady flame temperature. Now the

coefficient proportional to T 2
ps in the entropy part of Ẽchu after substituting (37) in

Ẽchu is [Θ(2mp + 1 − 2mpH )]2(γP )/(γ − 1). This gives the weight factor Wf for Ẽp

which has to be added to Ẽac. Hence, the total disturbance energy is

ẼT = Ẽac + Wf Ẽp, Wf =
2γ P̄ T̄

(γ − 1)ρpSp

[
Θ(2mp + 1 − 2mpH )

T̃S,0 − T̃∞

]2

. (38)

Non-dimensionalizing as before, we get the total non-dimensional generalized
disturbance energy ET . This energy incorporates the contributions from the entropy
fluctuations released by the flame as well as the temperature fluctuations inside the
propellant:

ET =
ẼT

1
2
ρ̄u2

mScl
= Eac + Wf Ep. (39)

Now, using (30) and (36), we get

ET (t) =
ẼT

1
2
ρ̄u2

mScl
= Eac + Wf Ep

=
1

2

N∑
n=1

⎡⎣(U 2
n + P 2

n

)
+

Mg−1∑
i=1

((
βiT

c
n

)2
+
(
βiT

s
n

)2
)⎤⎦ =

1

2
‖χ(t)‖2 (40)

where βi =
√

�ηδWf /ηi . Thus, the 2-norm of χ(t) is related to the physical generalized

disturbance energy and σ 2 gives the amplification of the same during the system
evolution. It should be noted that Chu’s energy is derived in the limit of zero mean flow
Mach number. However, in the present case, the mean flow Mach number is not zero
(M ∼ 0.1). If one includes the energy contribution due to mean flow, the disturbance
energy (ET ) cannot be represented by the L2 norm. The reason for choosing ET as
the L2 norm is as follows. In a dynamical system, L2 norm can be calculated easily
using singular value decomposition (SVD). The optimum initial condition and the
maximum transient growth can then be obtained directly from the SVD. The choice of
norms other than the L2 norm brings the complication of defining new inner products.
The inner products thus defined can be mathematically inconsistent, and some special
techniques (such as adjoint optimization) other than SVD should be used, which is
beyond the scope of this paper. Hence, in this analysis, Chu’s energy is used, so that
ET coincides with the L2 norm. The L2 norm can then be computed using SVD.
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Gas properties Propellant properties Rocket combustion chamber dimension

p̄ = 60 bar �h = 7 MJ kg−1 l = 8 m
T̄ = 2900 K α = 1.6×10−6 m2 s−1 Sl = 1.59 m

ρ̄ = 4.82 kg m−3 mp = 6 Sc = 0.2 m2

γ = 1.35 n = 0.4 Numerical parameters
 = 287 J kg−1 K−1 R̄ = 0.017 m s−1 N = 5

H = 0.76 ρp = 1800 kg m−3 Mg = 150
Θ = 0.19 Sp = 3542 J kg K−1 Time step �t = 0.005

Table 1. SRM parameter values and operating conditions.
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Figure 3. The evolution of acoustic pressure at x = 0.25 for a linearly stable system.
U1(0) = 3, P1(0) = 3, Pm �=1(0) =Um �=1(0) = 0,MT p(η, 0) = 0, C1 = 0.05, C2 = 0.001.

7. Results and discussion
Simulations are performed for a rocket motor, whose system parameters are given

in table 1. The numerical simulations are performed with the simulation parameters
N, Mg and time-integration time step �t as shown in table 1. Increasing N, Mg and
decreasing �t beyond the above values leads to a difference of less than 1 %. Hence,
the above values are chosen for all simulations shown below. The damping coefficients
C1 and C2 are varied to get a different dynamical behaviour for the simulation.

7.1. Linearly stable and unstable system

The linearized equation (22) is analysed for the stability of the system to small-
amplitude disturbances. Eigenvalues of the discretized linear operator L determine
the linear stability of the system in the asymptotic time limit. If all the eigenvalues
lie in the left half of the complex plane, the system is asymptotically stable to
small disturbances. This is called ‘classical linear stability’. However, the short-term
behaviour is different due to the non-normal nature of the linearized operator. Using
Farrell & Ioannou’s (1996) terminology, a system with Gmax =1 is called ‘linearly
stable’ (generalized linear stability) and the finite amplitude small disturbances die
down monotonically. The time evolution of unsteady oscillations is shown at one-
fourth of the motor length (l/4) from the head end as a representative position.
Acoustic pressure oscillation is shown in figure 3 for a system, stable according
to the classical linear stability. The amplitude decays in the asymptotic time limit,
eventually reaching a stable fixed point. The phase space plot between p(x = 1/4) and
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Figure 4. The phase portrait of the acoustic pressure and the unsteady burn rate at x = 0.25.
U1(0) = 3, P1(0) = 3, Pm �=1(0) =Um �=1(0) = 0,MT p(η, 0) = 0, C1 = 0.05, C2 = 0.001.
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Figure 5. The evolution of acoustic pressure at x =0.25 for a linearly unstable system.
U1(0) = 0.3, P1(0) = 0.3, Pm �=1(0) =Um �=1(0) = 0,MT p(η, 0) = 0, C1 = 3 × 10−4, C2 = 1 × 10−4.

R(x = 1/4) (figure 4) shows a spiral trajectory, eventually collapsing to a single point
(0, 0) corresponding to the steady flow (arrows indicate the direction of the time
evolution). This type of fixed point is called ‘stable focus’. The actual dimensions of
the phase space in the modal and discretized form is 2N + 2N(Mg − 1) = 2N(Mg),
which corresponds to the total number of state space variable in (29). The plot
in figure 4 is just the projection of 2N(Mg) space onto a two dimensional space.
Hence, we observe apparent intersections of the phase trajectories, which are actually
evolving without intersection in a higher dimension space. On the other hand, if
the real part of one of the eigenvalues is positive, the system is linearly unstable.
Figure 5 shows the acoustic pressure evolution from a small initial disturbance for a
linearly unstable system. Initially, the oscillations grow exponentially as predicted by
linear stability theory, reaching amplitudes where nonlinear terms start dominating.
The nonlinear terms in (15) and (16) start dominating, balancing the driving terms
resulting in the formation of oscillations of constant amplitude called a limit cycle.
The corresponding phase plot between p(x =1/4) and R(x =1/4) after removing the
transients leaves a closed curve (figure 6). This corresponds to limit cycles, where the
trajectories close itself as t → ∞. The presence of apparent multiple intersections in
figure 6 shows the presence of more dominant frequencies, which is a characteristic
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Figure 6. The phase portrait of the acoustic pressure and unsteady burn rate at x = 0.25.
U1(0) = 0.3, P1(0) = 0.3, Pm �=1(0) =Um �=1(0) = 0,MT p(η, 0) = 0, C1 = 3 × 10−4, C2 = 1 × 10−4.

of limit cycle oscillations in SRMs. The existence of a limit cycle was explained by
Culick (1976a) with second-order nonlinear acoustics. However, another important
phenomenon is the occurrence of ‘pulsed instabilities’ (Blomshield et al. 1997b) in
SRMs. This is a type of instability leading to unpredicted damage of the motors
and has not been explained to date with a physics-based acoustic–burn rate coupling
model. This issue is addressed in § 7.3. Before examining the nonlinear regime of
oscillations, it is important to discuss some more interesting results pertaining to the
non-normal nature of the linear operator L in the following section.

7.2. Pseudospectra and transient growth

The linear operator (29) in its discretized form (L matrix) is used for pseudospectra
computation. For normal operators, resonance (maximum amplification) happens at
the eigenvalues; at other points, the amplification is inversely proportional to the dis-
tance of the forcing frequency from the nearest eigenvalue. However, for non-normal
operators, resonant amplification of many orders occurs far from the eigenvalues and
is called ‘pseudoresonance’ (Trefethen & Embree 2005). The ε pseudospectra plot
is used to analyse non-normal operators and z is called an ε pseudoeigenvalue of
the operator L, if it satisfies ‖(zI − L)−1‖ � ε−1 (Trefethen & Embree 2005). The
perturbations ε given are very small compared with the size of the linear operator
(ε � ‖L‖). For normal operators, ε pseudospectrum consists of concentric circles,
confirming the inversely proportional relationship between the amplification and the
distance between the excitation frequency and the nearest eigenfrequency of the
system. However, for non-normal operators the contours are distorted.

Figure 7(a) shows that the pseudospectra of the L matrix are highly distorted near
the imaginary axis. The system considered is stable according to the classical linear
stability theory. All the eigenvalues of the system lie on the left half of the complex
plane. The perturbation in the linear operator L is depicted in its pseudospectra.
The relation between transient growth and the geometry of the pseudospectra is
described by Trefethen & Embree (2005). The contours spill over to the right half of
the complex plane, which is an indication of transient growth in the system evolution.
The zoomed-in contour of figure 7(a) near the origin is shown in figure 7(b). For
example, a perturbation of ε =101 (ε/‖L‖ = 5.33 × 10−4) leads to the spilling of the
pseudospectra to the right by z = 72 units from the imaginary axis. From this, the
transient growth is estimated to be (z/ε)2 = 7.22 = 51.84 (Trefethen & Embree 2005).
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Figure 7. (a) Pseudospectra of the non-normal linear operator L. (b) Zoomed-in view near the
origin and the calculation of the lower bound for the maximum transient growth. The contour
value represents log10 ε. C1 = 0.03, C2 = 0.02, ‖L‖ = 1.88 × 104, εmax =1 × 102.5, εmax/‖L‖ � 1.

This is just one point in the ε contour. Maximizing this over all ε contours results in
‘Kreiss constant (κ)’, which gives the lower bound for the maximum transient growth
(Gmax ). For a normal system, ε contours move proportionally outwards with z and
hence κ = 1 with no transient growth. Thus, qualitative information can be obtained
from the contours of the pseudospectra. As is shown in § 6 the square of the 2-norm
of the state space vector equals the total disturbance energy in the system. Hence, the
transient growth obtained now directly gives the disturbance energy amplification.
We also note that a very small perturbation (0.1 %) leads to an energy rise of 2
orders of magnitude. All these are obtained from investigating the geometry of the
pseudospectra.

The exact calculation of maximum transient growth is to evolve G(t) = ‖ exp(Lt)‖2

and find its maximum as discussed in § 4. Figure 8(a) shows the evolution of
‖eLt‖ and the maximum transient growth is found to be 128.92 = 1.66 × 104,
which is higher than the previous estimate based on the lower bound of Gmax

from pseudospectra. Also, the same figure shows that the use of response function
for modelling the acoustic–burn rate coupling gives rise to very small transient
growth. The response function is calculated as follows. The unsteady burn rate
equation (20) is solved for a forced pressure oscillation p = p0 sin(ωt) to get the
unsteady burn rate in the form R = R0 sin(ωt + φ). Here R0 is obtained from the
Fourier transform of the signal R at the frequency ω/2π and the phase from
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Figure 8. (a) Comparison of the evolution of ‖eLt‖ with differential equation for unsteady
burn rate and response function (YR) calculations, C1 = 0.03, C2 = 0.02, χ(0) = Vopt . (b) The
magnitude of the response functions (|YR |) of the propellant for various values of H.

0.05

0

–0.05

R
el

at
iv

e 
am

pl
it

ud
e

–0.10

–0.15

0 500 1000

Mode number

Burn rate modes

Acoustic modes

10–3

2

0

–2

2 4 6 8 10
–4

Modal convergence

Mode number

R
el

at
iv

e 
am

pl
it

ud
e

1500

Figure 9. Relative amplitude of the optimum initial condition direction. Inset shows the
relative amplitude of the acoustic modes, C1 = 0.03, C2 = 0.02, χ(0) = Vopt , N = 5,Mg = 150.

cos φ =
∫ ∞

0
p(t)R(t) dt/(

√∫ ∞
0

p2(t) dt

√∫ ∞
0

R2(t) dt). The response function (YR) used is

YR = R/p = R0e
iφ/p0. The magnitude of YR for various excitation frequencies is shown

in figure 8(b). It is also observed that the magnitude of YR is maximum around 1, which
corresponds to the time scale for unsteady conduction inside the unburnt propellant.

Next, for the extended system, the optimum initial condition (Vopt ) for the maximum
transient growth is calculated. The state space vector χ(t) has N pairs of acoustic
variables called ‘acoustic modes’. The remaining 2N(Mg − 1) variables, called ‘burn
rate modes’, describe the unsteady propellant burn rate response. Neither the acoustic
modes nor the burn rate modes are the eigenmodes of the system. They are only
reference modes (basis functions) satisfying the boundary condition and the variables
are just projected along these modes.

The relative amplitude of various modes in the ‘initial condition’ (Vopt ) is shown
in figure 9 with the acoustic modes shown in the inset. The important observation is
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that, for obtaining maximum transient growth, one should also excite in the ‘burn rate
modes’. Although the appropriate response function (YR) is used instead of solving
simultaneously the unsteady burn rate equations along with the acoustic equations,
there is a huge difference in the transient growth between the two curves in figure 8(a).
By using a response function, the dynamics involved in the unsteady burn rate are
implicitly not taken into account. Now, if the optimum initial condition for the
maximum transient growth is distributed more in the burn rate modes, then it is
natural to expect a small transient growth, if the dynamics in the burn rate modes
are not taken into account. Figure 9 shows indeed that the optimum initial condition
is distributed among the burn rate modes, and hence there is a large difference in
transient growth of both curves in figure 8(a). Therefore, for a stable system, according
to the classical linear stability, a very small local change in propellant burn rate (might
be due to inhomogeneity in the propellant) can give rise to an initial perturbation in
the burn rate mode. Also, as the motor is fired initially, the temperature distribution is
uniform in the propellant. As the SRM operates and as the port configuration changes
as time evolves, after some time, there might be fluctuations in the temperature at the
surface of the propellant. This serves as an initial condition where non-normality of
the system plays a role. This can cause transient growth and the amplitude increases,
eventually reaching a limit cycle (in the presence of nonlinearities). This important
observation cannot be made if one uses the propellant response for modelling the burn
rate, which neglects the transient dynamics of the burn rate response. Higher modes
in both acoustics and burn rate do not contribute to the optimum initial condition
showing the modal independence of the discretization with increasing number of
modes (figure 9). The transient growth is shown to play an important role in pulsed
instability, which is discussed below.

7.3. Pulsed instability

In SRMs, experiments indicate that rockets that are stable to small-amplitude
disturbances become unstable for larger ones (Blomshield et al. 1997b). They then
exhibit limit cycle oscillations or the rocket motor may be damaged. This phenomenon
is known as ‘pulsed instability’ or ‘triggering’ (Culick 2006). From a dynamical
system’s point of view, this kind of phenomenon is termed as ‘sub-critical transition’
to instability. The system is linearly stable, but nonlinearly unstable. In the previous
studies, only ad hoc models for burn rate–acoustic velocity coupling were used to
simulate the experimental results (Wicker et al. 1996; Anathakrishnan et al. 2005;
Flandro et al. 2007). Wicker et al. (1996) tried different forms of nonlinear propellant
response functions YR to demonstrate triggering. Flandro et al. (2007) have given a
comprehensive compilation of their earlier work and new formulations to predict the
nonlinear stability of SRMs. However, their model also assumes an ad hoc propellant
response function, which is not derived from the physics of the problem. Moreover,
the coefficients in the forms of the ad hoc function are obtained from experiments (i.e.
like matching limit cycle waveforms) and there is no rigorous theoretical reasoning
behind them. This paper solves both acoustic and propellant response equations
simultaneously, without any ad hoc assumptions on burn rate dependence on the
acoustic field being made in the formulation. The present numerical simulations show
‘pulsed instability’ in some parameter range.

Pulsed instability can possibly occur in two ways. The first is when the initial
disturbance amplitude is large enough for the nonlinear terms to be dominant
compared with the linear terms right from the start of the evolution. The linearized
equations (23), (24) and (25) are solved numerically and figure 10 shows decaying
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Figure 10. The evolution of acoustic pressure at x = 0.25 (linear simulation). U2(0) = 3,
P2(0) = 3,Pm �=2(0) =Um �=2(0) = 0,MT p(η = 1, 0) = 0.03,MT p(η �= 1, 0) = 0, C1 = 0.02,C2 = 0.02.
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Figure 11. The evolution of acoustic pressure at x =0.25 (nonlinear simulation). U2(0) = 3,
P2(0) =3, Pm �=2(0) =Um �=2(0) = 0,MT p(η = 1, 0) = 0.03,MT p(η �= 1, 0) = 0, C1 = 0.02, C2 = 0.02.

acoustic pressure oscillations. This means that the system is linearly stable. Linearized
equations scale with initial conditions and the dynamical evolution will look similar
for all scaled amplitudes. Now, for the same parameters and initial condition, the
nonlinear terms are included and (15), (16) and (20) are solved. Figure 11 shows that
the acoustic pressure initially decays, and after sometime it starts growing with the
amplitude eventually reaching a limit cycle. The initial high-amplitude disturbance
leads to the modal energy transfer from one mode to another by ‘direct interaction’
as explained in § 2. The energy transfer sustains the oscillations by keeping the
disturbance energy among the modes, while in the linearized case, the energy can
only get transferred to the base flow leading to the eventual decay of the acoustic
oscillations. The same picture is shown in the phase space plot in figure 12. Figure 12
shows that the trajectory from the linear evolution ends in a stable focus showing
classical linear stability. On the other hand, in figure 13, which is obtained from
nonlinear simulation, the trajectory ends in a limit cycle eventually. A plot of acoustic
energy (figure 14) shows that the linear and nonlinear simulations initially show a
similar qualitative behaviour and after some time they both diverge, leading to a
qualitatively different dynamical behaviour.
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Figure 12. Phase portrait of the acoustic pressure and unsteady burn rate at x = 0.25
from the linear simulation. U2(0) = 3, P2(0) = 3, Pm �=2(0) =Um �=2(0) = 0, MT p(η = 1, 0) = 0.03,
MT p(η �= 1, 0) = 0, C1 = 0.02, C2 = 0.02.
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Figure 13. Phase portrait of the acoustic pressure and unsteady burn rate at x = 0.25
(near limit cycle) from the nonlinear simulation U2(0) = 3, P2(0) = 3, Pm �=2(0) = 0, Um �=2(0) = 0,
MT p(η = 1, 0) = 0.03,MT p(η �= 1, 0) = 0, C1 = 0.02, C2 = 0.02.
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Figure 15. (a) The evolution of acoustic energy (Eac(t) =
∑N

m =1 (U 2
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m)) with optimum
initial condition χ(0) = Vopt , C1 = 0.03, C2 = 0.02. (b) Convergence study for (a) with N. Note

that ΦN =

√∑I
i = 1 ((φN (ti) − φN−1(ti))/φN (ti))2 × 100 is the measure used for studying the

convergence of the simulations. Moreover, ΦN represents any one of the variables P (x = 1/4),
R(x = 1/4) and E. The summation index i represents the value of the variables at the ith time
step in the numerical simulation. The threshold of ΦN is chosen as 1 % for convergence of the
solution, which corresponds to N = 5 in the present case.

The second route is by non-normal transient growth. Here even if one starts with
a finite small-amplitude suitable initial condition, transient growth due to the non-
normal nature of the system makes the oscillation grow even for a system stable
according to linear stability theory. The transient growth leads to large-amplitude
oscillations, which cause the nonlinear terms to play dominant roles and ‘direct
interaction’ of eigenmodes occurs. Figure 15(a) shows the comparison of acoustic
energy evolution with linear and nonlinear simulations. The transient growth in the
linear simulation decays eventually, while the nonlinear simulation leads to a limit
cycle. The higher transient growth in the linear simulation than that in the nonlinear
one is due to the damping effect from the nonlinear terms. Here, the initial condition
is chosen to be the optimum initial condition for the maximum transient growth
(χ(0) = Vopt ) to show the importance of this route to triggering. Also note that the
initial acoustic energy (Eac(t = 0) = 6.4 × 10−4) is very small compared with that in
figure 14 (Eac(t = 0) = 8.43).

A convergence study is performed to evaluate the number of Galerkin modes used
for the above simulations. Figure 15(b) shows the plot between percentage change
(ΦN ) in the results of P (x = 1/4), R(x =1/4) and Eac for various values of N. It is
found that for a threshold of 1 % change in the solution variables, N = 5 is sufficient.
The non-dimensionalized dominant Fourier frequency of the acoustic pressure during
the limit cycle corresponding to figure 15(a) is 0.48, which is very close to the
fundamental frequency of a pipe, closed at both the ends. The non-dimensional
frequency in figure 15(a) corresponds to 66.25 Hz for the SRM configuration given
in table 1.

Transient growth is quantified in a particular measure (§ 4). In this paper, generalized
disturbance energy ET (t) (defined to include the contribution of energy in the
disturbance from the degrees of freedom associated with the unsteady burn rate, see
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Figure 16. The evolution of Galerkin pressure modes: (a) first mode, (b) second mode,
(c) third mode, (d ) fourth mode, (e) fifth mode, (f ) acoustic pressure at x = 0.25,
U2 = 3.0, P2 = 3.0, Pm �=2(0) =Um �=2(0) = 0,MT p(η, 0) = 0, C1 = 0.02, C2 = 0.02.

§ 6) is used as a measure to quantify non-normality of the system. Transient growth
from the present simulation can be observed and compared with the experiments,
when ET (t) is measured. It is very difficult to devise an experiment to measure ET (t)
in an SRM. The existing experiments with SRMs (Blomshield et al. 1997a, 1997b;
Harris & Champlain 1998) measured only the acoustic pressure at the head end of
the motor. Therefore, it is difficult to have one-to-one comparison of transient growth
of thermoacoustic oscillations in SRMs from the available experimental acoustic
pressure data with the present simulation.

7.4. Bootstrapping

Bootstrapping is a phenomenon where the dominant frequency of a system changes
during the dynamical evolution of the system. This phenomenon is observed in SRMs
(Yoon, Peddieson & Purdy 2001). Yoon et al. (2001) attributed this phenomenon
to the nonlinearity alone. This is due to the transfer of energy among the modes
by either nonlinear coupling or non-orthogonality of eigenmodes. The phenomenon
of bootstrapping is discussed in the context of turbulence (Gebgart & Grossmann
1994) and thermoacoustic system (Yoon et al. 2001; Balasubramanian & Sujith 2008a,
2008b). An ad hoc acoustic velocity–combustion coupling model is used to simulate
the observed behaviour in the Rijke tube (Yoon et al.; Balasubramanian & Sujith
2008b), whereas in Balasubramanian & Sujith (2008a), it comes by actually solving
the unsteady equations for a ducted diffusion flame.

The initial condition (t = 0) is chosen as given in figure 16. The system, which is
stable according to the classical linear stability theory, is excited in the second Galerkin
mode, and the evolution of the other Galerkin modes is tracked. Figure 16(a–e) shows
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the evolution of the individual Galerkin pressure modes. Initially, the projection on
the second mode decays and transfers the energy to the first mode (figure 16a, b).
After some time, the first mode grows to sufficient extent, transferring the energy
back to the second mode causing it also to grow.

The time evolution of acoustic pressure at x = 0.25 plotted in figure 16(f) shows that
the pressure amplitude decreases initially and then, after some time, it increases by the
modal energy transfer. The plot of the fast Fourier transform (FFT) of the acoustic
pressure (figure 17) illustrates this phenomenon. For 0< t < 15, the second and fourth
eigenmodes are the dominant ones, which decay as time evolves. In 15 < t < 45, the
first eigenmode grows because of the energy transfer from the second and fourth
modes. Then, the first eigenmode transfers energy back to the second and fourth
eigenmodes (45 < t < 62.5) causing them to grow again. In the end (62.5 < t < 120),
there are higher harmonics due to the energy transfer to higher eigenmodes. The
dominant frequencies present in the system in the limit cycle are close to the natural
acoustic frequency of a closed–closed duct. A crucial difference is that the past
analyses have demonstrated bootstrapping in acoustic velocity–combustion coupling
systems (Yoon et al. 2001; Balasubramanian & Sujith 2008a, 2008b), whereas the
present analysis used the acoustic pressure–combustion coupling model.

8. Conclusion
A thermoacoustic stability analysis of a solid rocket motor is performed with

emphasis on the following. First, the non-orthogonality of the eigenmodes is accounted
for by incorporating the mean flow (convection) effects in the acoustic equations. The
classical linear stability theory predicts stability, which is valid only in the asymptotic
time limit. For non-normal systems, the short-term behaviour can be completely
different from the prediction by the classical linear stability theory for some initial
conditions. The transient dynamics of the unsteady propellant burn rate are included
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instead of the ad hoc response models used in the earlier analysis. The acoustic
and burn rate equations are solved simultaneously. In the present case, burn rate
equations are solved for a homogeneous propellant. The inclusion of a differential
equation in time for the unsteady burn rate leads to an increase in the degrees of
freedom of the system. Therefore, the growth or decay of oscillations is quantified
by a ‘generalized disturbance energy’, which includes the acoustic energy and the
unsteady energy in the propellant. The same energy is related to the 2-norm of
the state space vector that shows a transient growth because of the non-normal
nature of the system. The optimum initial condition for maximum transient growth
indicates a large contribution from the unsteady burn rate modes. The use of a burn
rate response function would have not captured this observation because it neglects
transients in burn rate modes. Using this model, exponential and pulsed instabilities
are simulated. In the past, pulsed instability has been simulated only by using ad
hoc response functions, which are not physics based. Moreover, in the present case,
pulsed instabilities are simulated with burn rate pressure coupling as against the burn
rate velocity coupling used in the earlier analysis. Pulsed instabilities can occur in
two ways. First, by introducing a large pulse into the system where nonlinearities
are important, leading to a limit cycle. Second, through a small initial condition
in the appropriate direction that causes transient growth. As the amplitude of the
oscillation increases, nonlinear terms can then contribute, leading to a limit cycle.
Finally, other observed phenomena such as dominant frequency switching during
the dynamical evolution of the system and ‘bootstrapping’ are also demonstrated.
In summary, it is essential to include all the dynamics in the propellant response
and the non-orthogonality of eigenmodes to predict instabilities more accurately in
SRMs. The system is no longer purely acoustic, but an extended one with degrees of
freedom in the combustion dynamics. The above analysis can be extended to other
thermoacoustic systems that share a common feature.
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Appendix A. Coupling terms in (10) and (11)
The linear and nonlinear coupling terms used in (10) and (11) are given below:

I 1
n,m =

∫ 1

0

[
MŪωm cos(ωmx) + M

dŪ

dx
sin(ωmx) − km sin(ωmx)

]
sin(ωnx) dx,

I 2
n,m =

∫ 1

0

(
M2Ū

γ

dŪ

dx
cos(ωmx) − ωm sin(ωmx)

)
sin(ωnx) dx,

I 3
n,m = −

∫ 1

0

kmŪ cos(ωmx) sin(ωnx) dx,

I 4
n,m = −

∫ 1

0

kmŪ sin(ωmx) sin(ωnx) dx,

I 5
n,m =

∫ 1

0

γMωm cos(ωmx) sin(ωnx) dx,

I 6
n,m =

∫ 1

0

[
(λM)2

dŪ

dx
Ū cos(ωmx) − γM2Ūωm sin(ωmx)

]
cos(ωnx) dx,
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I 7
n,m = −

∫ 1

0

ke cos(ωmx) cos(ωnx) dx,

N1
n =

∫ 1

0

[
N∑

m=1

(
Rc

m cos(ωmx) + Rs
m sin(ωmx)

) N∑
k=1

Uk sin(ωkx)

]
sin(ωnx) dx,

N2
n =

∫ 1

0

[
N∑

m=1

Um sin(ωmx)

N∑
k=1

Ukωk cos(ωkx)

]
sin(ωnx) dx,

N3
n =

∫ 1

0

[
N∑

m=1

Pm cos(ωmx)

N∑
k=1

Pkωk sin(ωkx)

]
sin(ωnx) dx,

N4
n =

∫ 1

0

[
N∑

m=1

Um sin(ωmx)

N∑
k=1

Pkωk sin(ωkx)

]
cos(ωnx) dx,

N5
n =

∫ 1

0

[
N∑

m=1

Pm cos(ωmx)

N∑
k=1

Ukωk cos(ωkx)

]
sin(ωnx) dx.

Appendix B. Linearized equations
The linearized evolution equation for the coupled acoustic–burn rate equation is

dχ

dt
= Lχ L =

(
A2N×2N B2N×(2N(Mg−1))

C(2N(Mg−1))×2N D2N(Mg−1)×2N(Mg−1)

)
(2NMg )×(2NMg )

,

A2N×2N = −2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 1
1,1 I 2

1,1 I 1
1,2 I 2

1,2 . . . .

I 5
1,1

γM

I 6
1,1

γM
− αNO + ξ1

2

I 5
1,2

γM

I 6
1,2

γM
. . . .

I 1
2,1 I 2

2,1 I 1
2,1 I 2

2,2 . . . .

I 5
2,1

γM

I 6
2,1

γM

I 5
2,1

γM

I 6
2,2

γM
− αNO + ξ2

2
. . . .

. . . .

. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2N×2N

,

B2N×(2N(Mg−1)) = −2m

β1

⎛⎜⎜⎜⎜⎝
Ec

1,1 Ec
1,2 . . Ec

1,N Es
1,1 Es

1,2 . . Es
1,N

Ec
2,1 Ec

2,N . . Ec
2,N Es

2,1 Es
2,1 . . Es

2,1

. . .

.

. . .

⎞⎟⎟⎟⎟⎠
2N×(2N(Mg−1))

,
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Ec
j,n(1, 1) = I 3

j,n, Ec
j,n(2, 1) = I 7

j,n, Es
j,n(1, 1) = I 4

j,n. All other entries are zero. Note that
Ec

j,n and Es
j,n are 2 × (Mg − 1) matrices.

C(2N(Mg−1))×2N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1

S2

S3

.

.

SN

0
0
0
.

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2N(Mg−1)×2N)

Sq(2, 2) = γMFβ1

(
B(1 − k) +

2Bk

�η

)
,

Sq is (Mg − 1) × 2N matrix. All other entries are zero.

D2N(Mg−1)×2N(Mg−1) =

(
Dc 0

0 Ds

)
Ds = Dc =

⎛⎜⎜⎜⎝
G1 0 0 . .

0 G2 0 . .

.

.

0 0 . . GN

⎞⎟⎟⎟⎠
(Mg−1)N×(Mg−1)N

,

GN = F

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bc
1 0 Bc

2 0 0 0 . .

H 1
2 + H 4

2 H 2
2 H 3

2 0 0 0 . .

H 4
3 H 1

3 H 2
3 H 2

3 0 0 . .

.

. . .

. . . .

. . . 0
H 4

Mg−1 . . 0 0 H 1
Mg−1 H 2

Mg−1 H 3
Mg−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(Mg−1)×(Mg−1)

,

Bc
1 = A(k − 1) −

(
k

�η

)2(
1 +

2�ηA

k

)
− m, Bc

2 =
β1

β3

(
k

�η

)2

,

H 1
q =

βi

βi−1

(
kηq − k2ηq

2�η
+

(
kηq

�η

)2
)

, H 2
q = −2

(
kηq

�η

)2

,

H 3
q =

βi

βi+1

((
kηq

�η

)2

− kηq − k2ηq

2�η

)
, H 4

q = − βi

β1

mpη1/k
q ,

where ηq is the coordinate at qth discretized point. Note that �η is the same between
all successive grid points.
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